538 # Chapter 4: Civil Engineering Applications of the Quadratic Function #### Part 1 - Background Information Before you work with specific examples within the Civil Engineering field, first take some time to learn about the origins and applications of quadratic equations. Go to the Algebra II moodle page to find the links to the documents below. You will receive points for reading through both articles. - 101 Uses of a Quadratic Equation: Part 1 = 3 - 101 Uses of a Quadratic Equation: Part 2 =3 ## Part 2 - Applied Problems for Bridges and Arches Please complete each problem thoroughly, showing all work and giving explanations about your strategies used to solve the problem. #### Tacoma Narrows Bridge The Tacoma Narrows Bridge in Washington has two towers that each rise 307 feet above the roadway and are connected by suspension cables as shown. Each cable can be modeled by the function $$y = \frac{1}{7000}(x - 1400)^2 + 27$$ where x and y are measured in feet. What is the distance d between the two towers? Nat drawn to scale D=2800 Vertex is shown on playerm In Cind distance Your have to realize With is to distance by Lucien their So you would have to then the Man Ci Com South have to then the Wind what officers as shown Distance between bours 1 #### Arch of the Gateshead Millennium Bridge Please go to the Gateshead Millennium Bridge link on the Algebra 2 moodle page to learn more about the design of the world's first and only tilting bridge. Click on the virtual tour and read about the design. The arch of the Gateshead Millennium Bridge, in Europe, forms a parabola with equation $y = -0.016(x - 52.5)^2 + 45$ where x is the horizontal distance (in meters) from the arch's left end and y is the distance (in meters) from the base of the arch. What is the width of the arch? Very Cosm y= (x-h)2 + K Withey = (h, K) Vertex = (62.5, 46) X= 105 m Because withex is half the distance so your double it to 4et whose distance x= 105 m ### Golden Gate Bridge Each cable joining the two towers on the Golden Gate Bridge in San Fransico, California can be modeled by the function $$y = \frac{1}{9000}x^2 - \frac{7}{15}x + 500$$ where x and y are measured in feet. What is the height h above the road of a cable at its lowest point? The equation is in Standard form and were booking for the lowest point of He who to cal He vertex we use re-b and that gives You an x value of Alos So to find y insett XC2100) and Solve Y= 1040 #### Arch of Sydney Harbor Bridge The arch of the Sydney Harbor Bridge in Sydney, Australia can be modeled by $y = -0.00211x^2 + 1.06x$ where x is the distance (in meters) from the left pylons and y is the height (in meters) of the arch above the water, as shown below. For what distance x is the arch above the road? was asked to find the values of x I STAND BINGS SH DOS BADON SHE FOR arch intercepts the road. This is were the arch meets the said I used a quadratic somula because from 845 B & TIP - YAC the volues. It you won at the excussion 2a it gives you you k and B Valuer. for your - 1.00 - 5/1/236 - 0,43888 C value gove see X exis is so m below road 50 -1.06 + 0-827478 Am NOV HO Dut c plug in Shill - 22 WILLIS Vulues and X = 202.86 - I Calcerysy? 0.0242) X = 66. 0.00422 1-2-3 3: 1.04 95/6 X 6 20 No durido (H) > Loud berlook eyparation that were veralled - Why did you was